Revision 0.70

2017-09-14

SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

General Product Information

Product	Application
1083 nm DFB Laser	He Polarizaton
with hermetic 14-Pin Butterfly Housing (RoHS compliant)	Spectroscopy
including Monitor Diode, Thermoelectric Cooler and Thermistor	Metrology
with PM Fiber, integrated μ -Isolator and Angled Physical Contact (AP	C)

Absolute Maximum Ratings

Parameter	Symbol	Unit	min	typ	max
Storage Temperature	T_S	°C	-40		85
Operational Temperature at Case	T_{C}	°C	-15		70
Operational Temperature at Laser Chip	T_{LD}	°C	10		50
Forward Current	I _F	mA			160
Reverse Voltage	V_R	V			2
Output Power	P_{opt}	mW			30
TEC Current	I _{TEC}	Α			1.8
TEC Voltage	V_{TEC}	V			3.2

Measurement Conditions / Comments

Stress in excess of one of the Absolute Maximum Ratings may damage the laser. Please note that a damaging optical power level may occur although the maximum current is not reached. These are stress ratings only, and functional operation at these or any other conditions beyond those indicated under Recommended Operational Conditions is not implied.

Recommended Operational Conditions

Parameter	Symbol	Unit	min	typ	max
Operational Temperature at Case	T_{case}	°C	5		60
Operational Temperature at Laser Chip	T_LD	°C	10		45
Forward Current	I _F	mA			150
Output Power	P_{opt}	mW	8		25

Measurement Conditions / Comments
measured by integrated Thermistor
ex fiber

Characteristics at $T_{LD} = 25^{\circ}$ at BOL

Parameter	Symbol	Unit	min	typ	max
Center Wavelength	λ_{C}	nm	1082	1083	1084
Linewidth (FWHM)	$\Delta\lambda$	MHz		2	
Mode-hop free Tuning Range	$\Delta \lambda_{\text{tune}}$	pm		1500	
Temperature Coefficient of Wavelength	dλ / dT	nm / K		0.06	
Current Coefficient of Wavelength	dλ / dI	nm / mA		0.003	
Sidemode Supression Ratio	SMSR	dB	30	45	

Measurement Conditions / Comments
see images on page 4
see note 1)
see note 1)
$P_{opt} = 25 \text{ mW}$

Distributor

info@amstechnologies.com www.amstechnologies-webshop.com

Revision 0.70

SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

Characteristics at I _{LD}	- 25° at 6	UL			cont a
Parameter	Symbol	Unit	min	typ	max
Mode-hop free Temperature Range	T_{LD}	° C	15		40
Mode-hop free Power Range	P_{opt}	mW	10		30
Laser Current @ P _{opt} = 25 mW	I_{LD}	mA			150
Slope Efficiency	η	W/A		0.3	
Threshold Current	I _{th}	mA			70
Polarization Extinction Ratio	PER	dB		20	

Measurement Conditions / Comments
temperature measured by integrated themistor
ex fiber
$P_{opt} = 25 \text{ mW}$

1) This variant allows wavelength tuning by temperature or current variation; in case of external backreflections small mode-hops of 100 MHz or less may appear; the use of a BFW01 or TOC03 package variants and effective optical isolation is recommended for spectroscopic application requiring absolutely mode-hop-free tuning.

Monitor Diode					
Parameter	Symbol	Unit	min	typ	max
Monitor Detector Responsivity	I _{mon} / P _{opt}	μA/mW	1		20

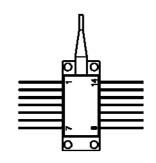
Measurement Conditions / Comments	
$J_R = 5 V$	

I nermoelectric Cooler					
Parameter	Symbol	Unit	min	typ	max
Current	I _{TEC}	А		0.4	
Voltage	U_TEC	V		1.5	
Power Dissipation (total loss at case)	P _{loss}	W		0.5	
Temperature Difference	ΔΤ	K			45

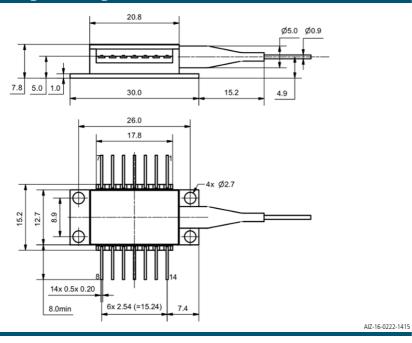
Measurement Conditions / Comments
$P_{opt} = 25 \text{ mW}, \Delta T = 30 \text{ K}$
$P_{opt} = 25 \text{ mW}, \Delta T = 30 \text{ K}$
$P_{opt} = 25 \text{ mW}, \Delta T = 30 \text{ K}$
$P_{opt} = 25 \text{ mW}, \Delta T = Tcase - TLD $

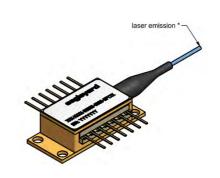
	riale Type				
Parameter	Symbol	Unit	min	typ	max
Resistance	R	kΩ		10	
Beta Coefficient	β			3892	
Steinhart & Hart Coefficient A	Α			1.1293 x 10	-3
Steinhart & Hart Coefficient B	В		2	2.3410 x 10	-4
Steinhart & Hart Coefficient C	C		8	3.7755 x 10	-8

Measurement Conditions / Comments				
T _{LD} = 25° C				
$R_1 / R_2 = e^{\beta (1/T_1 - 1/T_2)} $ at $T_{LD} =$	0° 50° C			
$1/T = A + B(\ln R) + C(\ln R)^3$				
T: temperature in Kelvin				
R: resistance at T in Ohm				


Revision 0.70

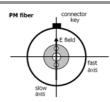
SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser




Pin Assignment

1	Thermoelectric Cooler (+)	14	Thermoelectric Cooler (-)
2	Thermistor	13	Case
3	Photodiode (Anode)	12	not connected
4	Photodiode (Cathode)	11	Laser Diode (Cathode)
5	Thermistor	10	Laser Diode (Anode)
6	not connected	9	not connected
7	not connected	8	not connected
Pins	are isolated from case unless noted otherwise.		

Package Drawings

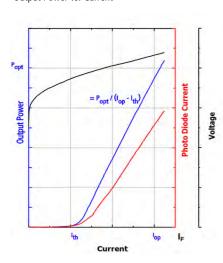


Fiber and Connector Type

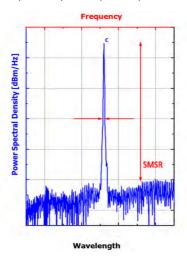
PM Fiber	900 / 125 / $6.6~\mu m,~UV/Polyester-elastomer Coating (I = 1 +/-0.1 m)$
Connector	different variants available

Measurement Conditions / Comments

Revision 0.70


2017-09-14

SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser



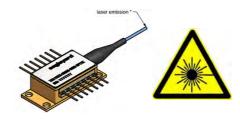
Typical Measurement Results

Output Power vs. Current

Spectra at Specified Optical Output Power

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

Unpacking, Installation and Laser Safety

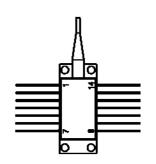

Unpacking the laser diodes should only be done at electrostatic safe workstations (EPA). Though protection against electro static discharge (ESD) is implemented in the laser package, charges may occur at surfaces. Please store this product in its original package at a dry, clean place until final use. During device installation, ESD protection has to be maintained.

The DFB laser is sensitive against optical feedback, so an optical isolator may be required in order to avoid any disturbance of the emission spectrum. Operating at moderate temperatures on proper heat sinks will contribute to a long lifetime of the diode.

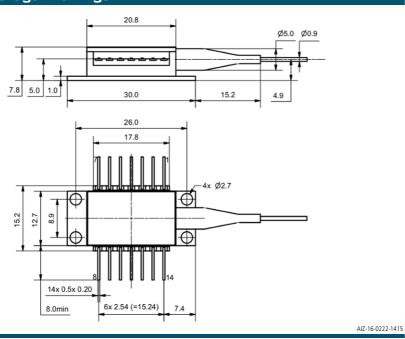
Avoid direct and/or indirect exposure to the free running beam. Collimating and focussing the free running beam with optics as common in optical instruments will increase threat to the human eye.

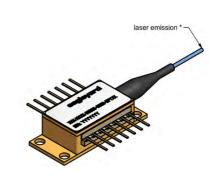
Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

INVISIBLE LASER RADIATION
AVOID EYE OR SKIN EXPOSURE
TO DIRECT OR SCATTERED RADIATION
CLASS 4 LASER PRODUCT
WAVELENGTH 1083 nm
MAX. OUTPUT POWER 30 mW


Revision 0.93

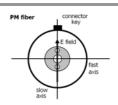
SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser




Pin Assignment

1	Thermoelectric Cooler (+)	14	Thermoelectric Cooler (-)
2	Thermistor	13	Case
3	Photodiode (Anode)	12	not connected
4	Photodiode (Cathode)	11	Laser Diode (Cathode)
5	Thermistor	10	Laser Diode (Anode)
6	not connected	9	not connected
7	not connected	8	not connected
Pins a	are isolated from case unless noted otherwise.		

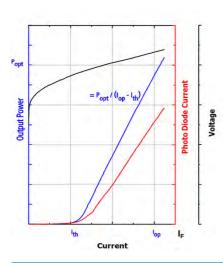
Package Drawings



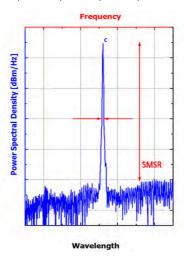
Fiber and Connector Type

SM Fiber			
Connector	different variants available		

Measurement Conditions / Comments


2017-03-02

SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser



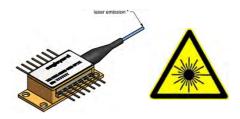
Typical Measurement Results

Output Power vs. Current

Spectra at Specified Optical Output Power

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

Unpacking, Installation and Laser Safety


Unpacking the laser diodes should only be done at electrostatic safe workstations (EPA). Though protection against electro static discharge (ESD) is implemented in the laser package, charges may occur at surfaces. Please store this product in its original package at a dry, clean place until final use. During device installation, ESD protection has to be maintained.

The DFB laser is sensitive against optical feedback, so an optical isolator may be required in order to avoid any disturbance of the emission spectrum. Operating at moderate temperatures on proper heat sinks will contribute to a long lifetime of the diode.

Avoid direct and/or indirect exposure to the free running beam. Collimating and focussing the free running beam with optics as common in optical instruments will increase threat to the human eye.

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

INVISIBLE LASER RADIATION
AVOID EVE OR SKIN EXPOSURE
TO DIRECT OR SCATTERED RADIATION
CLASS 4 LASER PRODUCT
WAVELENGTH 1083 nm
MAX. OUTPUT POWER 35 mW
66825-0

Revision 0.93

SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

info@amstechnologies.com www.amstechnologies-webshop.com

General Product Information

Product	Application
Tunable 1083 nm DFB Laser with hermetic 14 Pin Butterfly Housing	He Polarizaton
including Monitor Diode, Thermoelectric Cooler and Thermistor	Spectroscopy
with PM Fiber and Angled Physical Contact (APC)	Metrology
High-reliable Package compliant for Space Applications	

Absolute Maximum Ratings

Parameter	Symbol	Unit	min	typ	max
Storage Temperature	T_S	°C	-40		85
Operational Temperature at Case	T_{C}	°C	-40		85
Operational Temperature at Laser Chip	T_{LD}	°C	10		50
Forward Current	I_{F}	mA			160
Reverse Voltage	V_R	V			2
Output Power	P_{opt}	mW			35
TEC Current	I_{TEC}	Α			1.8
TEC Voltage	V_{TEC}	V			3.2

Measurement Conditions / Comments

Stress in excess of one of the Absolute Maximum Ratings may damage the laser. Please note that a damaging optical power level may occur although the maximum current is not reached. These are stress ratings only, and functional operation at these or any other conditions beyond those indicated under Recommended Operational Conditions is not implied.

Recommended Operational Conditions

Parameter	Symbol	Unit	min	typ	max
Operational Temperature at Case	T_{case}	°C	-20		65
Operational Temperature at Laser Chip	T_LD	°C	15		40
Forward Current	I _F	mA			150
Output Power	P _{opt}	mW	10		30

Measurement Conditions / Comments
measured by integrated Thermistor
ex fiber

Characteristics at T_{LD} = 25° at BOL

Parameter	Symbol	Unit	min	typ	max
Center Wavelength	λ_{C}	nm	1082	1083	1084
Linewidth (FWHM)	Δλ	MHz		2	
Mode-hop free Tuning Range	$\Delta \lambda_{\text{tune}}$	pm		1500	
Temperature Coefficient of Wavelength	$d\lambda/dT$	nm / K		0.06	
Current Coefficient of Wavelength	dλ / dI	nm / mA		0.003	
Sidemode Supression Ratio	SMSR	dB	30	45	

Measurement Conditions / Comments
see images on page 4
$P_{opt} = 30 \text{ mW}$
see note 1)
$P_{opt} = 30 \text{ mW}$

Revision 0.93

SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

Characteristics at T _{LD} = 25° at BOL cont'd						
Parameter	Symbol	Unit	min	typ	max	
Mode-hop free Temperature Range	T_LD	° C	15		40	
Mode-hop free Power Range	P_{opt}	mW	10		30	
Laser Current @ P _{opt} = 30 mW	I_{LD}	mA			150	
Slope Efficiency	η	W/A	0.1	0.3	0.6	
Threshold Current	I_{th}	mA			70	
Polarization Extinction Ratio	PER	dB		20		

Measurement Conditions / Comments
temperature measured by integrated themistor
$P_{opt} = 30 \text{ mW}$

1) This variant allows wavelength tuning by temperature or current variation; in case of external backreflections small mode-hops of 100 MHz or less may appear.

The use of a BFW01 or TOC03 package variants and effective optical isolation is recommended for spectroscopic application requiring absolutely mode-hop-free tuning.

A butterfly package with integrated isolator (BFY1x or BFW1x) is also available for some lasers.

Monitor Diode					
Parameter	Symbol	Unit	min	typ	max
Monitor Detector Responsivity	I _{mon} / P _{opt}	μA/mW	1		20
	'				

Meas	urement Conditions / Comments
$U_R =$	5 V

I nermoelectric Cooler					
Parameter	Symbol	Unit	min	typ	max
Current	I _{TEC}	А		0.4	
Voltage	U_TEC	V		0.8	
Power Dissipation (total loss at case)	P _{loss}	W		0.5	
Temperature Difference	ΔΤ	K			50

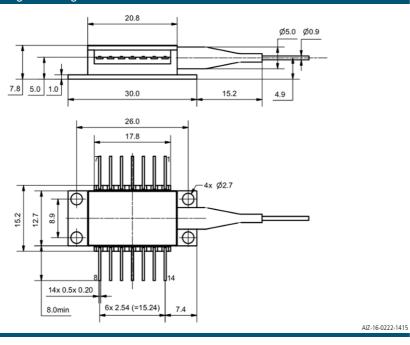
Measurement Conditions / Comments	
$P_{opt} = 30 \text{ mW}, \Delta T = 20 \text{ K}$	
$P_{opt} = 30 \text{ mW}, \Delta T = 20 \text{ K}$	
$P_{opt} = 30 \text{ mW}, \Delta T = 20 \text{ K}$	
$P_{opt} = 30 \text{ mW, } \Delta T = Tcase - TLD $	

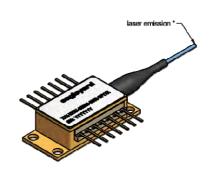
mermision (Standard NTC Type)					
Parameter	Symbol	Unit	min	typ	max
Resistance	R	kΩ		10	
Beta Coefficient	β			3892	
Steinhart & Hart Coefficient A	Α			1.1293 x 10)-3
Steinhart & Hart Coefficient B	В			2.3410 x 10) -4
Steinhart & Hart Coefficient C	C			8.7755 x 10) -8

Measurement Conditions / Comments					
$T_{LD} = 25^{\circ} C$					
$R_1/R_2 = e^{\beta(1/T_1-1/T_2)}$ at $T_{LD} =$	0° 50° C				
$1/T = A + B(\ln R) + C(\ln R)^3$					
T: temperature in Kelvin					
R: resistance at T in Ohm					

Revision 0.93

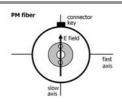
SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser




Pin Assignment

1	Thermoelectric Cooler (+)	14	Thermoelectric Cooler (-)
2	Thermistor	13	Case
3	Photodiode (Anode)	12	not connected
4	Photodiode (Cathode)	11	Laser Diode (Cathode)
5	Thermistor	10	Laser Diode (Anode)
6	not connected	9	not connected
7	not connected	8	not connected

Package Drawings

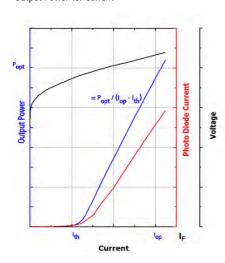

Caution. Excessive mechanical stress on the package can lead to a damage of the laser.

See <u>instruction manual</u> on www.eagleyard.com

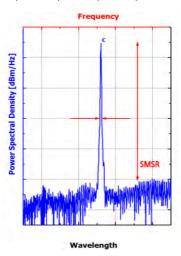
Fiber and Connector Type

PM Fiber	900 / 125 / 5.5 μ m, UV/Polyester-elastomer Coating (I = 1 +/-0.1 m)
Connector	FC/APC (narrow key / 2mm)

Measurement Conditions / Comments


Revision 0.93

SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser



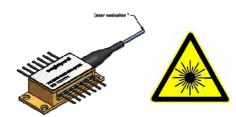
Typical Measurement Results

Output Power vs. Current

Spectra at Specified Optical Output Power

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

Unpacking, Installation and Laser Safety


Unpacking the laser diodes should only be done at electrostatic safe workstations (EPA). Though protection against electro static discharge (ESD) is implemented in the laser package, charges may occur at surfaces. Please store this product in its original package at a dry, clean place until final use. During device installation, ESD protection has to be maintained.

The DFB laser is sensitive against optical feedback, so an optical isolator may be required in order to avoid any disturbance of the emission spectrum. Operating at moderate temperatures on proper heat sinks will contribute to a long lifetime of the diode.

Avoid direct and/or indirect exposure to the free running beam. Collimating and focussing the free running beam with optics as common in optical instruments will increase threat to the human eye.

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

INVISIBLE LASER RADIATION
AVOID EVE OR SKIN EXPOSURE
TO DIRECT OR SCHITTERED RADIATION
CLASS 4 LASER PRODUCT
WAVELENGTH 1083 nm
MAX. OUTPUT POWER 35 mW

This data sheet is subject to change without notice.

© eagleyard Photonics

Revision 0.97

SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

General Product Information

Product	Application
Tunable 1083 nm DFB Laser	Spectroscopy
with hermetic 8 Pin TO Package	He Polarization
including Monitor Diode, Thermoelectric Cooler and Thermistor	Metrology

Absolute Maximum Ratings

Parameter	Symbol	Unit	min	typ	max
Storage Temperature	T_S	°C	-40		85
Operational Temperature at Case	T_{C}	°C	-20		75
Operational Temperature at Laser Chip	T_LD	°C	10		50
Forward Current	I_F	mA			200
Reverse Voltage	V_R	V			2
Output Power	P_{opt}	mW			90
TEC Current	I _{TEC}	Α			1.8
TEC Voltage	V_{TEC}	V			3.2

Measurement Conditions / Comments

Stress in excess of one of the Absolute Maximum Ratings may damage the laser. Please note that a damaging optical power level may occur although the maximum current is not reached. These are stress ratings only, and functional operation at these or any other conditions beyond those indicated under Recommended Operational Conditions is not implied.

Recommended Operational Conditions

Parameter	Symbol	Unit	min	typ	max
Operational Temperature at Case	T_{case}	°C	-20		65
Operational Temperature at Laser Chip	T_{LD}	°C	15		40
Forward Current	I _F	mA			190
Output Power	P _{opt}	mW	20		80

Measurement Conditions / Comments
measured by integrated Thermistor

Characteristics at T_{LD} = 25° at BOL

Parameter	Symbol	Unit	min	typ	max
Center Wavelength	λ_{C}	nm	1082	1083	1084
Linewidth (FWHM)	Δλ	MHz		2	
Mode-hop free Tuning Range	$\Delta \lambda_{\text{tune}}$	pm		1500	
Temperature Coefficient of Wavelength	dλ / dT	nm / K		0.06	
Current Coefficient of Wavelength	dλ / dI	nm / mA		0.003	
Sidemode Supression Ratio	SMSR	dB	30	45	

Measurement Conditions / Comments		
see images on page 4		
reached by temperature modulation		
Table 19, tamporature modalities.		
$P_{opt} = 80 \text{ mW}$		

Revision 0.97

SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

Characteristics at T _{LD} = 25° at BOL					
Parameter	Symbol	Unit	min	typ	max
Mode-hop free Temperature Range	T _{LD}	° C	15		40
Mode-hop free Power Range	P _{opt}	mW	20		80
Laser Current @ P _{opt} = 80 mW	I_{LD}	mA			190
Slope Efficiency	η	W/A	0.6	0.8	1.0
Threshold Current	I _{th}	mA			70
Divergence parallel (FWHM)	$\Theta_{ }$	0		8	
Divergence perpendicular (FWHM)	Θ_{\perp}	0		21	
Degree of Polarization	DOP	%		90	

Measurement Conditions / Comments
temperature measured by integrated themistor
parallel to short axis of the housing (see p. 3)
parallel to long axis of the housing (see p. 3)
80 mW; E field parallel to long axis of housing

Symbol	Unit	min	typ	max
I _{mon} / P _{opt}	μΑ/mW	0.05		1
		Symbol Unit	· , ·· · · ·	

Meas	surement Conditions / Comments	
$J_R =$	5 V	

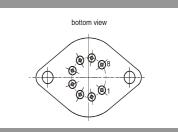
Symbol	Unit	min	typ	max
I _{TEC}	А		0.4	
U_TEC	V		0.8	
P _{loss}	W		0.5	
ΔΤ	K			50
	I _{TEC} U _{TEC} P _{loss}	I _{TEC} A U _{TEC} V P _{loss} W	I _{TEC} A U _{TEC} V P _{loss} W	I _{TEC} A 0.4 U _{TEC} V 0.8 P _{loss} W 0.5

Measurement Conditions / Comments
$P_{opt} = 80 \text{ mW}, \Delta T = 20 \text{ K}$
$P_{opt} = 80 \text{ mW}, \Delta T = 20 \text{ K}$
$P_{opt} = 80 \text{ mW}, \Delta T = 20 \text{ K}$
$P_{opt} = 80 \text{ mW}, \Delta T = T \text{case} - T \text{LD} $

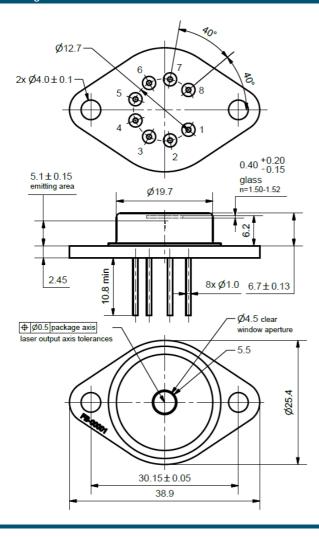
Parameter	Symbol	Unit	min	turn	may
raiailletei	Зуппрог	Ullit	111111	typ	max
Resistance	R	kΩ		10	
Beta Coefficient	β			3892	
Steinhart & Hart Coefficient A	А			1.1293 x 10	-3
Steinhart & Hart Coefficient B	В			2.3410 x 10	-4
Steinhart & Hart Coefficient C	C			8.7755 x 10	-8

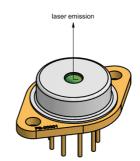
Thermistor (Standard NTC Type)

Measurement Conditions / Comments				
$T_{LD} = 25^{\circ} C$				
$R_1 / R_2 = e^{\beta (1/T_1 - 1/T_2)} $ at $T_{LD} =$	0° 50° C			
$1/T = A + B(\ln R) + C(\ln R)^3$				
T: temperature in Kelvin				
R: resistance at T in Ohm				



Revision 0.97


SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

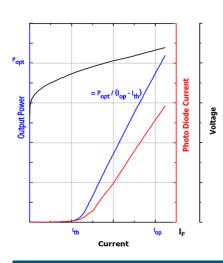


Pin Assignment			
1	Thermoelectric Cooler (+)	5	Laser Diode Anode
2	Thermistor	6	Monitor Diode Anode
3	Thermistor	7	Photo Diode Cathode
4	Laser Diode Cathode	8	Thermoelectric Cooler (-)
All 8 pins are isolated from case.			

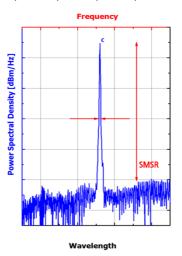
Package Drawings

AIZ-16-311-1543-B

Revision 0.97


2018-03-02

SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser



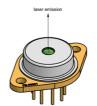
Typical Measurement Results

Output Power vs. Current

Spectra at Specified Optical Output Power

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

Unpacking, Installation and Laser Safety


Unpacking the laser diodes should only be done at electrostatic safe workstations (EPA). Though protection against electro static discharge (ESD) is implemented in the laser package, charges may occur at surfaces. Please store this product in its original package at a dry, clean place until final use. During device installation, ESD protection has to be maintained.

The DFB laser is sensitive against optical feedback, so an optical isolator may be required in order to avoid any disturbance of the emission spectrum. Operating at moderate temperatures on proper heat sinks will contribute to a long lifetime of the diode.

Avoid direct and/or indirect exposure to the free running beam. Collimating and focussing the free running beam with optics as common in optical instruments will increase threat to the human eye.

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

INVISIBLE LASER RADIATION
AVOID EYE OR SKIN EXPOSURE
TO DIRECT OR SCATTERED RADIATION
CLASS 4 LASER PRODUCT
WAVELENGTH 1083 nm
MAX. OUTPUT POWER 90 mW

